Goldene Relationen in Farbkompositionen von Adolph Menzel. Das Gemälde "Théâtre du Gymnase"
Main Information
Relations
Content-related Information
- Abstract:
- Diagramm der Farbwertkomposition (Lab-Farbraum, 16 Farbklassen-Modell) von Adolph Menzels Gemälde "Théâtre du Gymnase" unter besonderer Berücksichtigung der Darstellung Goldener Relationen zwischen Farbwerten. Adolph Menzel, Théâtre du Gymnase, 1856, Öl auf Leinwand, 46 x 62 cm, Berlin, Nationalgalerie. Quelle: Adolph Menzel 1815–1905. Das Labyrinth der Wirklichkeit. Kat. Ausst. Nationalgalerie Berlin. Hg. von Claude Keisch und Marie-Ursula Riemann-Reyher. Köln 1996, S. 27. Goldene Relation: Als Goldene Relation wird das bestimmte Größenverhältnis zweier Glieder bezeichnet, bei dem sich das Gesamt zum größeren Teil ebenso verhält wie der größere Teil zum kleineren Teil. Die das Größenverhältnis des Goldenen Schnittes repräsentierende Zahl ist die irrationale Zahl Phi (1,61…). Während die Goldene Relation mathematisch nicht vollständig durch rationale Zahlen darstellbar ist, ist die Relation jedoch vollständig durch Perzeption des spezifischen Größenverhältnisses erfassbar und in ästhetischer Kontemplation erfahrbar. Fibonacci-Zahlen: Die Zahlen der Fibonacci-Folge (1, 1, 2, 3, 5, 8, 13, 21, 34, ...) sind häufig involviert, wenn das Verhältnis des Goldenen Schnittes vorliegt. Jede Zahl der Fibonacci-Folge ist die Summe der beiden in der Zahlenfolge vorangehenden Zahlen und erreicht im Verhältnis zur vorangehenden Zahl eine weitgehende Annäherung an die Goldene Zahl Phi. Die im Diagramm einsehbaren Prozentangaben (Bild=100%) der Farbwerte und Farbwertsummen weisen demnach häufig Zahlen der Fibonacci-Folge auf. Visualisierung: Die diagrammatischen Darstellungen der Farbkompositionen erlauben es, die Goldene Relation zwischen Farbwerten und Farbwertsummen sowie zwischen dem gesamten Bild und einzelnen Farbwerten für den Betrachter zu visualisieren. Zudem werden zur Gegenüberstellung mit anderen farblichen Mustern exemplarisch Verhältnisse der silbernen Relation und spezifischer Farbsummenrelationen angezeigt. Stilometrie nach Farben: Goldene Relationen zwischen Farbwerten sind ein spezifischer Fall mathematisch zu artikulierender farbformaler Bildeigenschaften. Das durch die Zahl Phi repräsentierte Größenverhältnis gewährt einerseits die Artikulation farbanalytischer, intrabildlicher und interbildlicher Analogien, andererseits ist zu diversifizieren zwischen den jeweiligen, die Goldenen Relationen erzeugenden Farbwerten und Farbquantitäten, für weitere farbstilometrische Analysen sind die extrahierten Phi-patterns mit weiteren farblichen Mustern zu kombinieren. Farb-Key: Lab-Farbraum, 16 Farbklassen-Modell, Farbwert 1 (Rot) - Farbwert 16 (Dunkel). Der Lab-Farbraum ist ein geräteunabhängiger Farbraum und approximiert die menschliche Wahrnehmung. Euklidische Abstände zwischen den Farbwerten und sog. MacAdams-Ellipsoide im dreidimensionalen Farbraum ermöglichen, die menschliche Wahrnehmung mathematisch anzunähern und gewähren ein metrisches Skalenniveau. Software: Redcolor-Tool, Ommer Lab, Heidelberg Collaboratory for Image Processing (HCI).
- Keywords:
- digitale Bildanalyse
Farbanalyse
Malerei
Ölgemälde
Adolph Menzel
Stilometrie
pattern detection
Goldener Schnitt
Farbe
- DDC:
- 004 Data processing computer science
500 Natural sciences and mathematics
510 Mathematics
750 Paintings and paintings (museums)
Identifier
- DOI:
- https://doi.org/10.5282/ubm/data.84
- lmUB:
- bf83ac5a-70eb-4cef-9ea3-6a810e9af41b